网站首页
留学
移民
外语考试
英语词汇
法语词汇
旧版资料
请输入您要查询的出国留学信息:
标题
2012中考数学考点 三角形内角和
内容
三角形内角和定理证明中化归思想的渗透
宁夏同心县第四中学 马 军
所谓化归思想,就是在面临新问题时,总企图将它转化归结为已经解决了的问题或者比较熟悉的问题来解决。初中数学尤其是几何教学中,很多问题都可以用运化归思想来解决。
三角形内角和定理 三角形三个内角的和等
干180°
.
已知:△
ABC(
如图
1).
求证:∠
A+
∠
B+
∠
C=180
°.
三角形内角和定理有多种证明方法,那么,这些证法都是怎样想到的呢
?
我们下面来作一下分析,
思路一
要证明三角形的三个内角之和等于
180
°,联想到平角的大小是
180
°.因此,便设法将三角形的三个内角拼成一个平角,为此,用辅助线构造出一个平角,再用辅助线
(
平行线
)"
移动
"
内角,将其集中起来,或用其它方法将其集中起来,这就是
"
拼角
"
的思路
.
“
移动内角(或用其它方法)
”
把三角形的三个内角拼成一个平角
根据这个思路,可设计出多种证法,证法如下:
证法一
延长边
BC
,
CD
是延长线,并过顶点
C
作
CE
∥
BA
(如图
2
),则∠
1=
∠
A(
两直线平行,内错角相等
)
,∠
2=
∠
B(
两直线平行,同位角相等
).
又∵∠
1+
∠
2+
∠
ACB
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
ACB
=
180
°
.
证法二
过顶点
C
作
DE
∥
AB(
如图
3)
,则∠
1
=∠
A
,∠
2
=∠
B(
两直线平行,内错角相等
)
.
又∵∠
1+
∠
ACB+
∠
2
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
ACB+
∠
B
=
180
°
证法三
在
BC
边上任取一点
D
,作
DE
∥
BA
,
DF
∥
CA
,分别交
AC
于
E
,交
AB
于
F(
如图
4)
,则有∠
2
=∠
B
,∠
3
=
∠
C(
两直线平行,同位角相等
)
,
∠
1
=∠
4(
两直线平行,内错角相等
)
,
∠
4
=∠
A(
两直线平行,同位角相等
)
,
∴∠
1
=∠
A(
等量代换
).
又∵∠
1+
∠
2+
∠
3
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
C
=
180
°
.
证法四
作
BC
的延长线
CD
,在△
ABC
的外部以
CA
为一边,
CE
为另一边画∠
1
=∠
A(
如图
5)
,于是
CE
∥
BA(
内错角相等,两直线平行
).
∴∠
B
=∠
2(
两直线平行,同位角相等
).
又∵∠
1+
∠
2+
∠
ACB
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
ACB=180
°
.
证法五
在△
ABC
的内部任取一点
D
,连结
AD
、
BD
,并延长分别交边
BC
、
AC
于点
E
、
F
,再连结
CD(
如图
6)
,则有∠
7=
∠
1+
∠
2
,∠
8
=∠
3+
∠
4
,∠
9=
∠
5+
∠
6(
三角形的任何一个外角等于和它不相邻的两个内角的和
).
又∵∠
7+
∠
8+
∠
9=180
°
(
平角的定义
)
,
∴∠
1+
∠
2+
∠
3+
∠
4+
∠
5+
∠
6=180
°
.
即∠
BAC+
∠
ABC+
∠
ACB=180
°.
思路二
我们知道,平行线的同旁内角之和为
180
°,那么,能否将三角形的三个内角拼成平行线的一组同旁内角呢
?
根据这一思路,也可以设计出多种证法,证法如下:
证法六
过顶点
C
作
CD
∥
BA(
如图
7)
,则∠
1
=∠
A(
两直线平行,内错角相等
)
.
∵
CD
∥
BA.
∴∠
1+
∠
ACB+
∠
B
=
180
°
(
两直线平行,同旁内角互补
)
.
∴∠
A+
∠
ACB+
∠
B
=
180
°
.
证法七
任作射
AD
交
BC
于
D
,分别过点
B
、
C
作
BE
∥
DA
,
CF
∥
DA(
如图
8)
,则有∠
1
=∠
3
,∠
2
=∠
4(
两直线平行,内错角相等
).
∵
BE
∥
DA
,
CF
∥
DA
,
∴
BE
∥
CF.
∴∠
3+
∠
ABC+
∠
ACB+
∠
4
=
180
°
(
两直线平行,同旁内角互补
)
.
∴∠
1+
∠
ABC+
∠
ACB+
∠
2
=
180
°
.
∴∠
BAC+
∠
ABC+
∠
ACB
=
180
°
.
上面两种证明思路,都是化归思想的体现.这种思想是一种重要的解题策略,它可以帮助我们确定思考的方向
.
中考政策
中考状元
中考饮食
中考备考辅导
中考复习资料
随便看
会计
科学教师教育
生物学
计算机/信息科学 - 一般
工程 - 一般
心理学教师教育
综合研究
图形通信管理
兽医医药预科
商业 - 一般
紧急医疗技术
物理学(计算聚合物固态电子设备)
幼儿教育
个人家庭管理
美术教师教育
家庭/消费者科学 - 一般
通信教育
图形和图像技术
法国教师教育
法律预科
心理学 - 一般
人力资源开发
生物化学
基础教育
社会学
作为名词
作为国家监狱的堡垒或要塞
作为媒介的(指语言)
作为(当作)
作为惩戒地
作为报答
作为抵偿
作为抵押的家具
作为最后一着
作为标志的
profile
profiled
pro-filed
profiler
profilers
profile's
profiles
pro-files'
profiling
profilings
海外购房小心陷阱
希腊购房房产过户知识点,你都了解了吗?
马耳他的医疗体系如何?
移民希腊可以给你带来哪些便利呢?
吸引人的希腊福利
希腊适合什么类型的人移民?
希腊教育体制优势,你都知道吗
希腊移民指南——教育篇
希腊移民优势在哪?
移民快的:澳洲188C重大投资者移民
雅思备考你需要避免的雷区
这些为雅思口语加分的小众表达!
如何在准备雅思考试的同时提升英语能力?
如何冲破雅思7分?
2020年CUG英国大学排名重磅来袭,剑桥位居首位!
四个小妙招,轻松排除雅思听力干扰选项!
4月27日雅思大作文真题参考范文: 保存老建筑的利弊分析!
雅思听力应对政策
雅思阅读必须要培养的定位能力
如何提高英语听力成绩?
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。
Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/12/23 8:33:09