网站首页 留学 移民 外语考试 英语词汇 法语词汇 旧版资料
标题 | 留学背景提升 | 国内科研远程1V1-基于社交媒体数据的抑郁用户预测方法研究 |
内容 | 计算机科学 一封专属导师推荐信 一封完整的科研报告 一次完整的科研经历 【计算机科学】 基于社交媒体数据的抑郁用户预测方法研究 1 项目介绍 正式科研:1v1线上定制辅导 项目收获:科研报告、导师推荐信 科研补充包:48课时科研基础课+15课时学术写作基础课 2 涉及领域 本课题涉及到自然语言处理 | 情感分析 | 机器学习 | 人工智能 | 信息学等方面的知识,适合申请人工智能 | 数据科学 | 软件工程 | 自然语言处理 | 人机交互 | 计算机科学等相关专业的学生 3 适合人群 有意提高自身知识水平及学术能力的学生 有意掌握最前沿科研热点及科研方法的学生 有留学意向、跨专业深造的学生 4 研究前沿性 如今,抑郁症已成为最常见的精神障碍之一。在美国,大约有 10%的成年人患有抑郁症。同时,根据全球疾病负担研究的调查,全球抑郁症患者超过3亿人,抑郁症是全球残疾的第二大原因,而且仍在上升。然而,63%的严重抑郁症患者在美国没有治疗或治疗不足。其中一个原因是患者自己减少了与外界的联系,导致他们的症状不容易被家人注意到。 此外,患者不知道该问题,导致不及时就医。超过70%的患者在早期阶段不会向医生寻求帮助,这导致了严重的结果。人们越来越依赖社交媒体(如推特(Twitter),微博,Reddit等)分享情感和意见。 本项目将基于社交媒体数据,对用户开展抑郁检测,从而为医疗干预提供支持。 5 研究介绍 本项目主要的研究对象是某社交媒体平台用户的文本数据。在本项目中,学生首先学习了解抑郁症相关的基础概念、抑郁症结合文本信息挖掘的相关研究和方法、NLP相关基础知识和分析模型;其次,学生掌握研究的相关方法,设计研究方案,包括选取的平台、准备截取的数据、采用的分析模型等;之后,学生收集文本数据并进行数据预处理、进行相关模型代码编写、开展文本数据分析实验;最后,学生结合实验结果,总结抑郁用户的社交媒体文本特征、对提前检测和诊断抑郁症提出建议。 通过本项目,学生拓宽了以抑郁症为代表的文本病理信息数据挖掘相关知识储备,熟悉了自然语言处理的研究范式,提升了个人编程建模分析的能力。 6 课题要点 课题研究方法 文献阅读、模型仿真 课题难点 需要有一定的自然语言处理基础,具备较好的英文文献阅读能力及一定的计算机模型编程与分析能力。 7 1v1定制化辅导参考任务 任务一 掌握查阅文献和研究方法 掌握查阅文献和面向文献学习的方法; 掌握文献管理的方法; 通过查阅文献,学习该方向的研究热点和方向; 掌握快速提炼文献重要信息的方法。 任务二 学习相关基础知识并寻找研究场景 学习了解抑郁症相关的基础概念; 学习了解抑郁症结合文本信息挖掘的相关研究和方法; 学习自然语言处理相关基础知识和分析模型; 基于对现有研究内容的把握构建自己的研究思路。 任务三 掌握研究的方法并设计研究方案 掌握研究的相关方法,包括NLP建模仿真等; 设计研究方案,包括选取的平台、准备截取的数据、采用的分析模型等。 任务四 开展研究 收集文本数据并进行数据预处理; 进行相关模型代码编写; 开展文本数据分析实验。 任务五 总结与建议 结合实验结果,总结抑郁用户的社交媒体文本特征; 对提前检测和诊断抑郁症提出建议。 任务六 项目收尾 撰写整体报告; 准备一次20~30分钟的presentation。 (以上任务仅供参考,实际辅导根据定制化要求展开) |
随便看 |
|
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。