网站首页 留学 移民 外语考试 英语词汇 法语词汇 旧版资料
标题 | 2015考研数学:求导考点 | ||||||
内容 |
为了方便考生复习,出国留学网考研数学频道为大家提供2015考研数学:求导考点,大家知道求导在真题中可能出现的题型后,可以进行针对性的复习。 2015考研数学:求导考点 话说导数的由来可是很深远的,它有两大背景,一是几何背景,二是物理背景。几何背景是过曲线上一点作该点的切线,要作该点的切线就必须要确定该点处的切线斜率,怎么样才能把该点的斜率清楚的描述出来呢?就用到了极限,进而得到该点的斜率,引申为函数导数。物理背景就是研究物理运动的速度,研究方法与求切线斜率是一样的,这里就不赘述了。在这里我们并不是要强调导数的背景,当然几何背景大家都是熟知的,在这里是要跟同学们强调有关导数定义和求导数要注意的几点,下面是由跨考教育数学教研室佟庆英老师作如下总结: 第一,理解并牢记导数定义。 导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:1)在某点的领域范围内。2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存且相等的选项。3)导数定义中一定要出现这一点的函数值 ![]() ![]() 第二,导数定义相关计算。 这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。 第三,导数、可微与连续的关系。 函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。这也常常应用在做题中。
|
||||||
随便看 |
|
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。