网站首页  留学  移民  外语考试  英语词汇  法语词汇  旧版资料

请输入您要查询的出国留学信息:

 

标题 中考奥数知识点总结:恒等变形
内容
    中考奥数知识点总结:恒等变形
    
    恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.
    表示两个代数式恒等的等式叫做恒等式.
    如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.
    将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).
    以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.
    如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.
    1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.
    如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.
    反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).
    2.通过一系列的恒等变形,证明两个多项式是恒等的.
    如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
    例:求b、c的值,使下面的恒等成立.
    x2+3x+2=(x-1)2+b(x-1)+c ①
    解一:∵①是恒等式,对x的任意数值,等式都成立
    设x=1,代入①,得
    12+3×1+2=(1-1)2+b(1-1)+c
    c=6
    再设x=2,代入①,由于已得c=6,故有
    22+3×2+2=(2-1)2+b(2-1)+6
    b=5
    ∴x2+3x+2=(x-1)2+5(x-1)+6
    解二:将右边展开
    x2+3x+2=(x-1)2+b(x-1)+c
    =x2-2x+1+bx-b+c
    =x2+(b-2)x+(1-b+c)
    比较两边同次项的系数,得
    由②得b=5
    将b=5代入③得
    1-5+c=2
    c=6
    ∴x2+3x+2=(x-1)2+5(x-1)+6
    这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.
    以上由出国留学网中考频道为您精心提供,更多
    中考数学复习资料大全尽在本网站 ,希望对您的中考数学复习有所帮助。
    
随便看

 

出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。

 

Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/6/1 2:19:12