网站首页  留学  移民  外语考试  英语词汇  法语词汇  旧版资料

请输入您要查询的出国留学信息:

 

标题 高中数学必修2《直线、平面平行的判定及其性质》教案
内容 高中数学必修2《直线、平面平行的判定及其性质》教案
    共1课时
    1教学目标
    一、知识与技能:1、理解并掌握直线与平面平行的性质定理;
    2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。
    二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。
    三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。
    2重点难点
    教学重点:线与面平行的性质定理及其应用。
    教学难点:线与面的性质定理的应用。
    3教学过程 3.1 第一学时 教学活动 活动1【导入】问题引入
    一、问题引入
    木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A′C′.现在小刘要经过平面A′C′内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
    预设:(1)过P作一条直线平行于B′C′;
    (2)过P作一条直线平行与BC。
    (问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
    活动2【讲授】新课讲授
    二、知识回顾
    判定一条直线与一个平面平行的方法:
    1、定义法:直线与平面没有公共点。
    2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
    三、知识探究(一)
    思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
    答:平行或异面。
    思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
    答:无数条;平行。
    思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
    答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
    思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
    答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
    (四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
    四、知识探究(二)
    定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
    定理可简述为:线面平行,则线线平行。
    直线与平面平行的性质定理的符号表示:
    (由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
    活动3【练习】课堂练习
    五、应用示例
    练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
    (1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
    (2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
    (3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
    例3 如图所示的一块木料中,棱BC平行于面A′C′.
    (1)要经过面A′C′ 内一点P和棱BC将木料锯开,应怎样画线?
    (2)所画的线与平面AC是什么位置关系?
    分析:经过木料表明A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
    练习2:如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,求证:FG∥BD.
    活动4【讲授】课堂小结
    六、课堂小结
    1、直线与平面平行的判定定理
    (1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
    (2)线线平行→线面平行
    2、直线与平面平行的性质定理
    (1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
    (2)线面平行→线线平行
    (课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
    活动5【作业】课后作业
    P61练习,习题2.2A组:1,2. (做在书上)
    P62习题2.2A组:5,6.
    2.2直线、平面平行的判定及其性质
    课时设计 课堂实录
    2.2直线、平面平行的判定及其性质
    1第一学时 教学活动 活动1【导入】问题引入
    一、问题引入
    木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A′C′.现在小刘要经过平面A′C′内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
    预设:(1)过P作一条直线平行于B′C′;
    (2)过P作一条直线平行与BC。
    (问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
    活动2【讲授】新课讲授
    二、知识回顾
    判定一条直线与一个平面平行的方法:
    1、定义法:直线与平面没有公共点。
    2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
    三、知识探究(一)
    思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
    答:平行或异面。
    思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
    答:无数条;平行。
    思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
    答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
    思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
    答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
    (四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
    四、知识探究(二)
    定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
    定理可简述为:线面平行,则线线平行。
    直线与平面平行的性质定理的符号表示:
    (由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
    活动3【练习】课堂练习
    五、应用示例
    练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
    (1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
    (2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
    (3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
    例3 如图所示的一块木料中,棱BC平行于面A′C′.
    (1)要经过面A′C′ 内一点P和棱BC将木料锯开,应怎样画线?
    (2)所画的线与平面AC是什么位置关系?
    分析:经过木料表明A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
    练习2:如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,求证:FG∥BD.
    活动4【讲授】课堂小结
    六、课堂小结
    1、直线与平面平行的判定定理
    (1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
    (2)线线平行→线面平行
    2、直线与平面平行的性质定理
    (1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
    (2)线面平行→线线平行
    (课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
    活动5【作业】课后作业
    P61练习,习题2.2A组:1,2. (做在书上)
    P62习题2.2A组:5,6.
    高中教学计划小编推荐各科教学设计:
    语文数学英语历史地理政治化学物理生物美术音乐体育信息技术
    
    高中教学计划小编推荐各科教学设计:
    语文数学英语历史地理政治化学物理生物美术音乐体育信息技术
    
    
随便看

 

出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。

 

Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/5/22 18:49:52